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Abstract  

Monte Carlo simulations were used to study the assembly of model binary mixtures whose pure 

components have either distinct or similar crystal order symmetry. Specifically, we simulated 

mixtures of hard disks with either squares or hexagons, where the components have size ratios that 

optimize their co-assembly into compositionally disordered solids. For the disks+squares mixture, 

along with the enhanced regions of solid miscibility, we report a novel continuous-looking 

transition from the disk-like to the square-like behavior that occurs through a region that 

seamlessly bridges the regions of hexatic phase of disks and the tetratic phase of squares, which 

we term the mosaic (M) region. For the equimolar composition, this M region is bound by the 

isotropic phase at low pressures and by the hexatic-tetratic (two-phase) macro-phase segregated 

region above a critical transition pressure. Our analysis showed that the M region lies in the vicinity 

of the critical point, manifesting local compositional fluctuations that give rise to micro-phase 

segregated regions of interspersed square-rich four-fold and rhombic lattice symmetry, and disk-

rich six-fold clusters, that coexist across the system. The M behavior is characterized by a short-

ranged translational order and an algebraic decay of the correlation functions for six-fold and four-

fold orientational order. A finite size scaling analysis was used to evaluate the dependence of the 

local compositional susceptibility with the system size to extract the critical exponent associated 

with the approach of the critical point. For the disks+hexagons mixture, a fully mixed hexatic 

phase was observed for all compositions.  

 

 

I. Introduction 
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Recent advances in the synthesis [1–3] and fabrication [4,5] of faceted sub-micron particles with 

different shapes have spurred interest in their use as building blocks for the assembly of targeted 

complex structures. Several tunable parameters like particle shape [6,7] and inter-particle 

interactions  [7,8], allow the design of a wide range of morphologies having enhanced optical 

characteristics for potential applications in nanophotonics [9,10], sensing [11], and catalysis [12–

14]. Towards designing such materials, recent efforts have focused on predicting phase behavior 

using theory  [15,16] and simulation [6,17–21] for hard polyhedral particles in the bulk (3D) and 

in monolayers (2D), where the formation of ordered structures entirely depends on the entropic 

forces encoded in the particle shape. In particular, several experimental protocols leveraging slit 

confinement or interfacial pinning  [22,23] can be deployed to assemble monolayers from different 

readily synthesizable nano- and micro-sized polyhedral or polygonal particles for applications in 

thin-film optical and electronic devices  [24–28].  

Single-component hard-particle superstructures arise at sufficiently high concentrations due to 

packing entropy manifesting as effective entropic bonds between the constituent particles. Pure 

systems of squares have been predicted to exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young 

(KTHNY) [29–32] behavior, wherein the transition is continuous between both isotropic fluid and 

tetratic phase and tetratic and solid phases [21]. Simulation results reported for the melting behavior 

of hard disks suggest that the transition occurs in two steps with a first-order fluid-hexatic 

transition and a continuous hexatic-solid phase transition [33]. The tetratic and hexatic phases are 

partially ordered phases characterized by a short-range translational order and quasi-long ranged 

bond orientational order. 

By mixing particles of different shapes, we can access a wider variety of superstructures having a 

combination of the constituents’ physical properties. For example, ordered superstructures have 

been predicted for binary mixtures of hexagons+squares, squares+triangles, hexagons+triangles 

with and without enthalpic patchiness encoded in their facets [34]. The phase behavior of binary 

mixtures strongly depends on the relative size ratios and contents of the components. This 

correlation was observed, e.g, in a size-bidisperse system of hard disks, where the liquid-hexatic-

solid transition changes to a first order liquid-solid transition upon increasing the composition of 

the small disks  [35]. For binary mixtures of parallel hard squares having disparate sizes, a fluid-
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solid phase-separated state was found with small and large squares forming the fluid and solid 

phases, respectively [36]. These predicted phase transitions reflect the interplay of mixing and 

packing entropy. At very high pressures, packing entropy dominates over mixing entropy leading 

to strong segregation of the components into their respective stable structures, separated by an 

interface. An interesting attribute associated with the phase separation of mixtures is the 

occurrence of critical behavior, the point where the two phases converge to become a single phase; 

this critical point can be approached either from the single or the two-phase region. The critical 

behavior associated with phase transitions is driven by the divergence in the magnitude of 

(otherwise local) compositional or density fluctuations as the critical point is approached. Critical 

phenomenon has been observed in a wide range of systems like colloid-polymer mixtures  [37,38], 

active and passive colloid mixtures  [39,40], and also in biophysical systems such as multi-

component lipid bi-layers, and lipid monolayers [41,42]. 

In the context of a fundamental understanding of crystalline and partial ordering in 2D systems, 

the assembly of micro- and nanoparticles on hexagonal and square-lattice arrays [21,43] is well 

established and has been widely studied; however, much less is known about whether and how a 

system can be designed to gradually bridge these two types of ubiquitous lattice symmetries. In 

this work, we tackle this question by studying the entropy-driven assembly of binary mixtures of 

hard disks with squares using Monte Carlo simulations, where the components have size ratios 

that optimize their co-assembly into compositionally disordered solids. For reference, we also 

studied mixtures of disks and hexagons which, in contrast to disks and squares, exhibit pure-

component solid phases and partially ordered phases with similar hexagonal lattice symmetry. 

The disks+squares mixture with optimized size ratio was found to exhibit broad ranges of 

compositions where crystalline (with hexagonal and square order) and partially ordered phases 

(with hexatic and tetratic order) exist. Around the equimolar composition, a novel mosaic (M) 

region was observed having locally ordered microscopic clusters with square-rich four-fold and 

rhombic (RB) lattice symmetry, and disk-rich six-fold symmetry, that are distributed randomly 

throughout the simulated domain. The microscopic ordering of the four-fold and six-fold domains 

found in the M region are associated with the local compositional fluctuations that occur in the 

region closer to the hexatic-tetratic critical point. This coexistence of finite clusters of two different 

symmetries over a finite range of conditions (pressures and compositions) can be seen as a small 
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region that lies in the vicinity of the critical point, associated with the interplay of the hexatic and 

tetratic phases observed for the disk-rich and square-rich systems, respectively. For the binary 

mixtures of hexagons and disks, the hexatic phase is observed for all compositions since the 

individual pure-components have similar order-disorder transition behavior and lattice symmetry. 

 

II. METHODS 

 

A. Exchange free energy calculation 

We explored the phase behavior of 2D hard binary mixtures of disks+squares and disks+hexagons, 

when the components have size ratios that optimize their co-assembly into solid solutions. The 

size ratio is defined as ξ = σ/a where σ = disk diameter and a = polygon edge length. For this 

purpose, we adopted the exchange free-energy method [44] to predict  values which tend to 

maximize the range of compositions and packing fractions where substitutionally disordered solid 

solutions occur. This general approach was recently introduced and applied to 3D mixtures of 

spheres and polyhedra. The method is based on finding the  value that minimizes an exchange 

free-energy (∆Fx) metric, which is obtained by adding the excess chemical potentials associated 

with substituting one particle in each pure host solid by a guest particle:  

                            ∆𝐹𝑥 =   𝜇𝑒𝑥
𝑠1 (ℎ𝑜𝑠𝑡 → 𝑔𝑢𝑒𝑠𝑡) +   𝜇𝑒𝑥

𝑠2 (ℎ𝑜𝑠𝑡 → 𝑔𝑢𝑒𝑠𝑡)                            (1)                           

where 𝜇𝑒𝑥
𝑠𝑖  is the reduced excess chemical potential (in units of thermal energy) associated with a 

single-particle host-to-guest mutation in pure host phase 𝑠𝑖 (i = 1 or 2). 𝜇𝑒𝑥
𝑠𝑖  is also a mixing free 

energy at infinite guest dilution (see connection in Supplementary Information, SI, Sec. I) and 

hence by minimizing ∆Fx i.e., the “cost” for host-guest substitutions in both solid phases, mixing 

entropy and substitutionally disordered solution behavior are enhanced. 

∆Fx was found by using the unoptimized Bennett’s formula, resulting in, 

         ∆𝐹𝑥  ≈  − ln {
〈𝑃𝑎𝑐𝑐

𝑠1 (1 →2)〉

〈𝑃𝑎𝑐𝑐
𝑠1 (2 →1)〉

 
〈𝑃𝑎𝑐𝑐

𝑠2 (2 →1)〉

〈𝑃𝑎𝑐𝑐
𝑠2 (1 →2)〉

},                                                              (2)  

where 〈𝑃𝑎𝑐𝑐
𝑠𝑖 (𝑖 → 𝑗)〉 (or 〈𝑃𝑎𝑐𝑐

𝑠𝑖 (𝑗 → 𝑖)〉) is the average acceptance probability of virtually mutating 

one particle of type i (or j) into a particle of type j (or i) in phase 𝑠𝑖 at pressure, pm  [44]. pm is the 
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smallest pressure at which both pure components are solid phases for a given ξ. To estimate the pm 

value, we selected the isotropic→tetratic transition as the relevant condition for the squares since 

the tetratic phase is a partially “ordered” phase that is stable for a broad range of densities (see SI 

Sec. II). In the case of disks and hexagons, since the hexatic phase region is narrow and 

heterogeneous, we choose the conditions for the hexatic→triangular solid (1∆) phase transition 

(had we chosen the isotropic-hexatic transition pressure instead would have made no difference). 

To compute ∆Fx for different ξ, we used system sizes of 5040 particles for the disks+squares 

system and 6400 particles for the disks+hexagons system. Figure 1a shows the results for ∆Fx vs. 

ξ for the hard-core mixture of disks+squares. The minimum of ∆Fx occurs for ξ = 1.04, which, 

coincidentally corresponds to ξ where the pure disks and pure squares have equivalent order-

disorder transition pressure (ODP)  [45]. A relatively flat profile is observed for ∆Fx between ξ  

1.04 and ξ  1.2 (noting that ξ  1.13 corresponds to the shapes having equal area), with differences 

< 0.2 kbT. This region occurs when the product of the exchange probabilities, shown in the inset 

of Fig. 1a, are maximized. We choose ξ = 1.1 as the representative optimal value expected to 

promote the formation of regions with substitutionally disordered solid solutions (i.e., for the disk-

rich and square-rich solid solutions), being quite near to  ξ = 1.04 at the ∆Fx minimum. Similar 

calculations were performed for the disks+hexagons mixture shown in Fig. 1b. We observed the 

∆Fx minimum for ξ = 1.82 (corresponding to equal-area shapes and quite close to ξ = 1.84 

prescribed by the equal-ODP rule  [45]). The difference in ∆Fx values is < 0.6 kbT for 1.6 < ξ < 

2.0, indicating a relatively wide range of ξ expected to promote substitutionally disordered solid 

solutions.   

 

 

   



6 
 

 

Fig. 1 (color online). Variation of the exchange free energy, ∆Fx, with component size ratio,  = 

σ/a, for the hard-core mixture of (a) disks and squares and (b) disks and hexagons (σ = diameter 

of disk, a = polygon edge length). The  values corresponding to equal footprint area and equal 

order-disorder transition pressure (ODP) are indicated. Curves are shifted so that the minimal value 

corresponds to ∆Fx = 0. The inset shows the average exchange probabilities 𝑃𝑎𝑐𝑐 for mutating a 

host particle into a guest particle in the two solid phases (s1-disks (1), s2- squares or hexagons (2)) 

which are used to estimate ∆Fx.  

 

B. Bond orientational order parameter 
 

For 2D monolayer structures, the local n-fold bond orientational order, 𝛷𝑛(𝒓𝒌) for each k particle 

is given by, 

                                    𝛷𝑛(𝒓𝒌) =  
1

𝑁𝑘
 ∑ exp(𝑖𝑛𝜃𝑗𝑘)𝑘

𝑗=1                                               (3) 

Where i is the imaginary number and 𝜃𝑗𝑘 is the angle between the vector connecting particle k with 

its neighbor j and a fixed reference vector. 𝑁𝑘 is the number of nearest neighbors of particles k. 

For n= 6, 𝑁𝑘 was calculated via Voronoi tessellation, while for n= 4, the four closest neighbors 
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were used to avoid the degeneracy in the Voronoi construction [46]. The global six-fold and four-

fold bond order parameter is then obtained by, 

                                       〈𝛹𝑛〉 =  〈
1

𝑁
 ∑ 𝛷𝑛(𝒓𝒌)𝑁

𝑘=1 〉                                                    (4) 

To analyze the correlation length of the local bond order parameters, we compute the n-fold local 

bond orientational correlation function given by,  

                                      𝑔𝑛(𝑟∗) =  〈𝛷𝑛(0) 𝛷𝑛
∗(𝒓)〉                                                     (5) 

where * indicates the complex conjugate of 𝛷𝑛(𝒓) for the particle at a distance 𝒓 from the reference 

particle.  

 

C. Mapping of pressure-composition phase diagram 

At each selected composition of a mixture, we used hard-particle Monte Carlo (MC) simulations 

in the isothermal-isobaric NPT ensemble and serial compression runs with small pressure steps, 

∆P* = 0.4, starting from a low-density disordered state. We simulated systems with sizes in the 

range 8000 N  11203 to estimate equation of state data and approximate phase boundaries; e.g., 

for the hexatic and tetratic phases. Each pressure step entailed 107 MC cycles with the last 2.5 × 

106 cycles used for analysis, where each cycle includes N translations, N rotations, N/2 swaps and 

2 volume moves. A swap move randomly chooses a particle pair of different species (disk and 

polygon) and swap their positions while preserving the orientation of the polygon. Swap moves 

are imperative to speed-up the equilibration of the systems allowing particles to explore phase 

space far from their original positions [47]. All trial moves were accepted according to the 

Metropolis criterion, rejecting any overlaps between two disks, two polygons (via Gilbert-

Johnson-Keerthi algorithm [48]) or a disk and a polygon (via the separating axes theorem [49]). 

The step size for the translational, rotational and volume moves are tuned to target acceptance 

probability values of 0.4, 0.4, 0.3, respectively.  

We verified the formation of solid solutions by mapping the pressure-composition phase diagram 

for the binary mixtures with the optimized components size ratio ξ values (1.1 for disks+squares 

and 1.82 for disks+hexagons mixtures). The phase boundaries were identified by analyzing the 



8 
 

local correlation of the six-fold and four-fold bond-orientational (see Sec. II B for details) and the 

positional order parameters.  

At high pressures, the disks+squares mixture phase-separate into their respective nearly pure 

component solid phases. The regions where the two phases coexist were mapped based on the 

results from interfacial simulations (see SI Sec. III). Most interfacial simulations were carried out 

at the equimolar global composition, with additional runs performed for other compositions to 

better map out the two-phase coexistence boundaries. Results are reported in dimensionless 

quantities for distance, r* = r/a, reduced pressure, P* = Pa2/kbT  and area fraction/density, 𝜂 =

 𝑁𝐴𝑝 𝐴⁄ , where 𝑃 is pressure, kb is Boltzmann’s constant, 𝑇 is temperature, 𝑁 is the total number 

for particles, 𝐴 is the total area of the system, and 𝐴𝑝 is the area occupied by the particles. 

D. Analysis of critical and near critical point behavior in disks+squares system 

Finite size scaling (fss) analysis was used to locate the critical point and extract the critical 

exponents associated with the hexatic-tetratic phase transition. As the critical point is approached 

in the Ising model, the correlation length of the ordered domain and the local compositional 

susceptibility, χ, both diverge following a power law. The fss analysis provides a way to 

extrapolate the diverging properties obtained in finite box size simulation to the thermodynamic 

limit. In this study, we carry out the fss analysis for the squares+disks mixture with = 1.1 to 

obtain the critical point and extract the critical exponents at the equimolar composition. The 

analysis is done for N= 10000 particles and at each value of P*, the square simulation box with 

side length, Lb is divided into 𝑁𝑏 × 𝑁𝑏 (where 𝑁𝑏=1, 2,…) sub-cells of linear dimension, L (= 

Lb/𝑁𝑏  )  [50]. We note here that the fluctuation observed in L at each P* due to area-changing 

moves was less than 1%. We measure the χ as a function of P* for each sub-cell width L, using 

the fluctuation relation given by [40],  

                                       𝜒(𝑃∗) =  𝐿2 〈(𝑆 − 〈𝑆〉)2〉                                          (6) 

where the local order parameter, S= 𝑥𝑠𝑞
𝐿 −  𝑥𝑑

𝐿,  𝑥𝑠𝑞
𝐿  and 𝑥𝑑

𝐿 are the compositions of squares and 

disks within the sub-cell of width L. The χ for the bimodal distribution observed in the two-phase 

region is evaluated by assuming a mixture model of two normal distributions [40].  We note here 

that the local compositional fluctuations gauged using the fss analysis are akin to those that would 

be observed in a grand canonical ensemble. The sub-cell sizes are carefully chosen such that the 
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length L, assuming L≥ ℇ (where ℇ is the correlation length), provides a reasonable statistical 

measure of the local compositional fluctuations.  

We also performed large scale simulation in the M region that occurs near the critical point to 

obtain the long-ranged characteristics of the six-fold and four-fold bond-orientational order 

parameters. To achieve this, we followed the scale-up protocol described in Ref. [21]. First, we 

equilibrated the equimolar disks+squares mixture with ξ = 1.1 and N = 6400 particles in the NPT 

ensemble at P*= 14.9 starting from a random initial particle configuration in a square box. The 

final equilibrated structure with the target density is replicated 2×2 times to obtain the initial 

configuration with N = 25,600 particles for the second equilibration run in the isochoric (NVT) 

ensemble. In the final stage, the equilibrated structure is again replicated to reach the target system 

size with N = 102,400 particles and equilibrated in the NVT ensemble. At every stage, the 

equilibration runs were carried out for 107 MC cycles. Results are reported in dimensionless 

quantities for distance, r* = r/a, reduced pressure, P* = Pa2/kbT  and area fraction/density, 𝜂 =

 𝑁𝐴𝑝 𝐴⁄ , where 𝑃 is pressure, kb is Boltzmann’s constant, 𝑇 is temperature, 𝑁 is the total number 

for particles, 𝐴 is the total area of the system, and 𝐴𝑝 is the area occupied by the particles. 

 

III. RESULTS AND DISCUSSION 

 

The area fraction-composition and pressure-composition (Figs. 2a and b) phase diagrams exhibit 

broad stable regions of substitutionally disordered square-rich 1□ (square lattice) and  disk-rich 1∆ 

(triangular lattice) solid solutions along with the hexatic (in disk-rich region) and tetratic (in 

square-rich region) phases. The disk-rich 1∆ solid phase dissolves up to 30% of squares which do 

not have any orientational preference and are randomly distributed throughout the underlying 1∆ 

lattice sites (Fig. S3 in SI Sec. V). In the square-rich side, the 1□ solid phase dissolves up to 26% 

of disks and is preceded by regions of tetratic and I (isotropic) phases at lower pressures. For η < 

0.836 and P* < 19 and for all 𝑥𝑠 values, we observed two main phase transitions: I → hexatic and 

hexatic → 1∆ solid in the disk-rich region (xs < 0.3) and I → tetratic and tetratic → 1□ solid in the 

square-rich region (xs > 0.74). The transitions from the I phase to the ordered 1∆ (or 1□) solid, 

occurring through an intermediate hexatic (or tetratic) phase are analogous to the well-studied 
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phase transitions in the systems of pure monodisperse hard-disks (or hard-squares). The tetratic 

phase formed by the pure squares (𝑥𝑠=1.0) is stable over a range ~ 8.25 < P* < 15.4 and 0.72 < η 

< 0.832  [21] that is wider than the 7.59 < P* < 7.68 and 0.716 < η < 0.72 [33,51] range of the 

hexatic phase formed by pure disks (𝑥𝑠=0), a difference that can be attributed to the defects being 

more delocalized in the tetratic phase [21].  

 

FIG. 2 (color online). Area-composition and pressure-composition phase diagram for mixtures of 

disks+squares (a and b) and disks+hexagons (b and c) at their corresponding optimal component 

size-ratio ξ = σ/a of 1.1 and 1.82, respectively. In (a) and (b) the white dot indicates the critical 

point at equimolar composition and the yellow and grey-shaded area corresponds to the M region 

and two-phase coexistence region, respectively. In (a) the tie lines in the two-phase regions are 

shown as dashed lines. The insets in (a) and (b) shows the I, hexatic and 1∆ regions as xs→0.  The 

symbols 1∆, 1□, and I denote the triangular solid, square solid, isotropic phase, respectively and 

M indicates the mosaic region. 

 

Figure 2a and b also shows that, with increasing molar fraction of squares (disks) in the disk-rich 

(square-rich) region, the range of η and P* where the hexatic (tetratic) phase is stable increases 
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significantly compared to the pure disk (square) system. This increase in the stability region for 

the hexatic phase with 𝑥𝑠 suggests that the squares accentuate the hexatic behavior as it persists 

even for up to P* ~ 16.2, which is approximately twice the pure-disk hexatic → 1∆ solid transition 

pressure of P*≈ 7.68. The tetratic phase is stable up to P*≈ 18.9 with increasing disk 

concentration, which is about 1.2 times the pure-square tetratic → 1□ solid transition pressure, P* 

≈ 15.4. This increase in the stability regions of the hexatic and tetratic phases with the content of 

the guest component is attributable to the increased concentration of topological defects created 

by the dissimilarly shaped particles residing in the host-solid lattice. These defects tend to destroy 

the quasi-long-range positional correlation in the solid phases in favor of the corresponding 

partially ordered phases.  

The disks and hexagons form a ‘compatible’ mixture system since both pure components form the 

hexatic and 1∆ ordered phases. As shown in Figs. 2c and d, this enables a high mixing affinity that 

leads to the formation of a 1∆ solid solution for the entire range of hexagon compositions, xh. The 

hexatic phase was stable for all compositions within the narrow range of 2.70 < P* < 2.77 and 

0.708 < η < 0.72  in the disk-rich and 2.64< P* < 2.73 and 0.68 < η < 0.71 in the hexagon-rich 

regions. We identified the boundaries between the hexatic phase and 1∆ solid solution by analyzing 

the positional pair-correlation and six-fold bond orientational correlation functions (see Sec. VIII 

and Fig. S14 in the SI for details). We note that two-1∆ phase-separated states are likely to occur 

at pressures much larger than those simulated here, and reach conditions where packing entropy 

would overtake the mixing entropy that favored the 1∆ solid-solution state. Note that for the pure 

disk limit in the disks+squares and disks+hexagons diagrams shown in Figs. 2b and 2d, the stability 

P*-range of the hexatic phase is numerically different because P* values are reduced with respect 

to the corresponding polygon edge lengths (i.e., P* = Pa2/kbT), rather than the disk diameter. The 

rest of this section is devoted to analyzing the highly non-trivial results of the disks+squares 

mixture only.  

Figures 2a and b show a peculiar continuous transition between the disk-like and the square-like 

behaviors over a range of square molar fractions, 0.48 < xs < 0.53, 14.5< P* < 15.72 and 0.779< 𝜂 

< 0.791. We designate this region bridging the hexatic, tetratic, and isotropic phases as the mosaic 

(M) region. Along increasing P* or  at the equimolar mixture composition, the M region is 

sandwiched between the I and (hexatic-tetratic) two-phase regions and precedes the critical point 
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(see Fig. 3a). Entering from the I phase, the M character in local conformations ensues at P*= 14.5 

and η ≈ 0.779. As the critical point is reached at P*= 15.72 and η= 0.791 from the M region, we 

observed that the distribution width of the local order parameter, S (see Fig. 3b) increases, 

indicating that the fluctuations of the local composition grow giving rise to the micro-domains of 

square-rich tetratic and disk-rich hexatic phases. At P*= 15.84 and η= 0.793, the distribution of S 

changes from unimodal to bimodal indicating the onset of a two-phase coexistence state containing 

macro-segregated six and four-fold ordered domains within the given simulation box size. We 

used this incipient bimodal state (for the equimolar system at P*= 15.84) to estimate the 

approximate 𝑥𝑠 values of the two coexistence phases near the lower bound of the two-phase 

coexistence boundary shown in Figs. 2a and b. We expect a relatively flat boundary closer to the 

mixture critical point where the composition of the two coexisting phases converge.     

 

FIG. 3 (color online). Critical behavior of the equimolar disks+squares mixture with  = 1.1 and 
N = 10000. (a) Equation of state, P* vs. η; the star marks the critical point at P*= 15.72 and η= 

0.791 and the vertical solid lines mark approximate boundaries between the I phase-M region and 

(hexatic-tetratic)-(1∆-tetratic) two-phase regions. (b) Distribution of the local order parameter, S 
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for states along the M→hexatic-tetratic two-phase region pathway, obtained by using 8×8 sub-

cells (of dimension L).  (c) Local compositional susceptibility, χ, measured as a function of P* for 

different sub-cell lengths, L. Approximate phase boundaries are shown. (d) Relation between the 

maximum local compositional susceptibility, χm, and L on a logarithmic scale. The error bar 

indicates the fluctuations observed in L and the dashed line is a fit with the critical exponent value, 
𝛾

𝜐
 = 1.33. I = isotropic phase, M = mosaic region and a = square side length. 

 

The critical point shown in Fig. 3a was estimated as follows. Using fss analysis, we measured the 

local compositional susceptibility, χ [see Eq. (6)] for different system sizes to gauge the local 

compositional fluctuation as shown in Fig. 3c and observed that the χ value diverges as the critical 

point is approached from either the M region or the two-phase region. Movie 1 in SI shows a 

sample simulation at the estimated critical point. The criteria for identifying the square-rich tetratic 

(red) and disk-rich hexatic (blue) phases in Movie 1 are discussed in Sec. VI and Fig. S8 in the SI. 

We quantitatively evaluate the dependence of the maximum local compositional susceptibility, 𝜒𝑚 

with the sub-cell size, L as shown in Fig. 3d and estimated the critical exponent 
𝛾

𝜐
= 1.33±0.01 by 

using the scaling relation, 𝜒𝑚 ∝ 𝐿
𝛾

𝜐. The power-law scaling nature of the local compositional 

susceptibility with the system size observed at the critical point reflects that the I→M→ (hexatic-

tetratic) two-phase behavior is consistent with the continuous phase transition having critical 

exponents belonging to the Ising universality class. The 
𝛾

𝜐
 value, however, is inconsistent with the 

two-dimensional Ising universality class (
𝛾

𝜐
=1.75), a difference that could reflect the nature of 

hexatic and tetratic phases at coexistence. However, at least part of this deviation can also be 

attributed to some of the limitations of our computational approach, e.g., the moderate range of 

sub-cell size, L used in our analysis. While much larger L values can allow detection of longer-

range correlations of the composition within the sub-cells, much longer runs and specialized moves 

would be required to address the critical slowing down behavior that ensues as the critical point is 

approached. While our analysis is based on the variations of a single order parameter (S), field 

mixing with a second order parameter into an ordering operator (via suitably chosen nonuniversal 

scaling factors) may allow matching to the universal Ising distribution of the ordering operator at 

criticality  [52–54];such an approach, however, would require simulations in a semigrand isobaric 

ensemble to allow extensive sampling of global density and composition fluctuations in a finite-

size system [55–57]. Further investigation into studying the phase transition behaviors using the 
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classical XY spin model systems could also provide additional insights on characteristics of the 

system as the critical point is approached [58]. 

The near-critical point fluctuations of the local composition observed in the M region engenders 

distinctive local structural properties. To characterize and distinguish the M region from the 

hexatic and tetratic phases, we examined the six and four-fold local bond-orientational correlation 

functions, g6(r
*) and g4(r

*) [defined in Eq. (5)] and the pair correlation function, g(r*) (see Fig. 4) 

for xs= 0.5. At P*= 14.9 and η = 0.783, the M region showed algebraic decay of both g6(r
*) and 

g4(r
*) with an exponent value < −¼, and short-range layering (liquid-like behavior) of g(r*). We 

selected the −¼ exponent value as threshold to align with the KTHNY theory prediction for the 

scaling parameter lower-bound for the fluid to (n-fold)-atic phase transition (where n= 4 or 6). 

Configurations from the M region exhibit a long-ranged g6(r
*) and g4(r

*) orientational order 

compared to the I phase at P*= 13.7 and η= 0.770, where we observed a quick decay in the g6(r
*) 

and g4(r*) peaks. For M configurations the large-r behavior of the g6(r*) and g4(r*) shows algebraic 

decay exponents that lie within the range ~ -0.4 < η6 < -0.25 and -0.55 < η4 < -0.25, respectively; 

whereas for the I phase  g4(r*) decays exponentially and g6(r*) decays algebraically with η6= -0.6 

(see Fig. 4c). The six-fold ordering is stronger than the four-fold ordering in the M region due to 

the contribution from the RB clusters in the square-rich regions. This continuous change in the 

correlation of the g6(r
*) and g4(r

*) orientational order as we enter the M region from the I phase 

signals a significant change in the size of the network of six and four-fold clusters, which correlates 

with the sharp growth of χ as the M region is crossed (en route to the critical point) for all sub-cell 

sizes, L (Fig. 3c). This leads to the formation of ordered micro-domains with both hexagonal-like 

and square-like structural motifs suggesting that the disks and squares have comparable proclivity 

to form stable six-fold and four-fold connections, respectively, that coexist across the system. 

Figure 5 shows that the algebraic decay of g6(r
*) and g4(r

*) orientational order ofM region 

configurations is sustained even for a larger system size, a result that correlates with the 

observation that χ increases with sub-cell size, L (see Fig. S12 in SI), indicative that the local 

compositional fluctuations of the M region increase with system size. The M character was also 

observed for xs=0.49 and 0.52 (see Sec. VI Fig. S10 in SI). As we approached the disk-rich (or the 

square-rich) region, we observed the hexatic (or tetratic) phase with quasi-long ranged g6(r
*) (or 

g4(r
*)) orientational order (see Fig. 2a and b). Results similar to those in Fig. 4 are shown in Fig. 
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S11 for the transitions I → hexatic at xs= 0.45 and I → tetratic at xs= 0.55. Although the M region 

was observed within a narrow xs range between 0.48 and 0.53, M-like characteristics were also 

detectable for the hexatic (or tetratic) phase region at xs= 0.45 (or 0.55) and P* > 15.3 (or P* > 

14.9) where both g6(r
*) and g4(r

*) orientational order functions decay algebraically along with 

large values of χ (see SI Fig. S11).  

 

FIG. 4 (online color). Selected properties of equimolar disks+squares mixture with  = 1.1 and N 

= 10000. (a, b) Bond orientational order correlation functions for the I phase and the M region: 

g4(r*) (a) and g6(r*) (b). The black dashed and solid lines indicate algebraic and exponential decay 

of the orientational correlation with exponent −1
4⁄  and −1

12⁄ , respectively. The algebraic decay 

exponent values η4 and η6 corresponding to the green and blue dashed lines shown in (a and b) for 

the I phase and M region are reported in table (c). (d) 2D pair correlation functions shifted 

uniformly to distinguish peaks for the phases and conditions indicated (by pressures P*). I = 

isotropic phase, M = mosaic region.   
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Fig. 5 (color online). Bond orientational order functions g4(r*) (a) and g6(r*) (b) for the M region 

of equimolar disks+squares mixture with  = 1.1 for N= 10000 and 102400 particles. The dashed 

and solid lines indicate algebraic and exponential decays with exponent −1
4⁄  and −1

12⁄ , respectively. 

 

Figures 6a and 6d (inset) show configurations of the M region and the two-phase coexistence state 

at P*= 14.9 and η= 0.783, and P*= 16.5 and η = 0.80, respectively. The clusters of six-fold and 

four-fold ordered domains are shown by coloring the particles based on the local values of Φ6 (Fig. 

6b) and Φ4 (Fig. 6c). For the M region, the coloring reveals a complementary correlation between 

the disk-rich regions with high six-fold clusters and square-rich regions with high four-fold ordered 

clusters, that are randomly distributed throughout the simulated domain. We also detected regions 

of RB order formed by squares with high local values of Φ6. To test that the M region is not just a 

system that has become kinetically arrested en route to macro-phase separation, we simulated a 

system started at a state of complete phase separation of squares and disks at P*=14.9, and 

confirmed that the macro-domains gradually disintegrated to form M micro-domains. Movie 2 in 

the SI shows this process for an equimolar mixture with N= 39712 particles. Overall, our analysis 

indicates that the M region indeed comprises near-critical configurations having a heterogeneous 
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microstructure resembling a “mosaic” of different ordered micro-domains which locally resemble 

tetratic/RB-like and hexatic-like regions. 

 

 

Fig. 6 (color online). Local bond orientational and compositional order for the equimolar 

disks+squares mixture with  = 1.1 and N = 10000. (a)-(c) correspond to the M region at η= 0.783 

where the particles are colored based on type (a) and the local values of Φ6 (b) and Φ4 (c). Each 

snapshot represents a ~1/10th section of the entire simulation box. (d) Approximate phase 

boundaries and local composition parameters, fc
sq and fc

d, as a function of area fraction, η. The 

inset shows a representative snapshot of two-phase coexistence state at η = 0.8. I = isotropic phase, 

M = mosaic region.  

 

To understand the mechanism associated with the onset of the M region from the I phase, we 

computed the local composition parameters, 𝑓𝑐
𝑠𝑞

 and 𝑓𝑐
𝑑 to detect the correlation between the local 

compositional heterogeneity and the presence of ordered domains formed by squares and disks 

(see Fig. 6d). Parameters 𝑓𝑐
𝑠𝑞

 and 𝑓𝑐
𝑑 are the average fraction of the like-shaped nearest neighbors 
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to a square and disk, respectively (normalized such that particles with all like-shaped neighbors 

corresponds to 1). For the I phase, the average values of both 𝑓𝑐
𝑠𝑞

 and 𝑓𝑐
𝑑 are close to a well-mixed 

value of 0.5, reflecting the overall equimolar composition. Upon compression, both 𝑓𝑐
𝑠𝑞

 and 𝑓𝑐
𝑑 

increase gradually in the M region (for η > 0.78), and then more steeply as the hexatic-tetratic two-

phase separated region is reached (η > 0.791). The loss of the particles’ local compositional mixing 

observed in the M region compared to the I phase, reveals that the entropic bonding [59,60], which 

favors contacts between like-shaped particles, becomes sufficiently strong to seed the formation 

of disk-rich six-fold and square-rich four-fold micro-domains. The grain boundaries around these 

micro-domains contain particles with both 𝑓𝑐
𝑠𝑞

 and 𝑓𝑐
𝑑 values close to 0.5, which can be viewed as 

compositional “defects” contributing to the structural disorder in the M region. The migration of 

these defects was monitored at η= 0.783 using “pseudo dynamic” Monte Carlo simulations in the 

NVT ensemble. Movie 3 in the SI shows that, although the migration of these defects is restricted 

to the grain boundary regions, their compositions decorrelate much faster compared to particles 

inside ordered domains (see Fig. S8c Sec. VI of SI). This suggests that both the growth of ordered 

M domains from the I state, and the slow restructuring of the M domain patterns would be mediated 

by the accrual of local rearrangements at the grain boundaries. The compositional defects observed 

in the M region are expected to be correlated with the topological defects typically observed in the 

melting transition of two-dimensional solids. 

The growth of the six-fold and four-fold ordered domains as the M region is entered from the I 

phase was tracked by performing a cluster analysis. The protocol used to identify such clusters is 

described in the SI Sec. IV. The fraction of particles belonging to the largest four-fold and the 

largest six-fold clusters increased as the system enters the M region (see Figs. 7a and 7b). In the 

M region, these largest n-fold (where n= 4 or 6) cluster tends to form a loose, interconnected 

network that is randomly distributed percolating the simulation box as shown in the snapshots in 

Fig 7. While we expect the n-fold clusters to form a percolating network at the critical point, we 

observed that the six-fold clusters also percolated the sample in the M region, likely due to the 

finite size effects. In the I phase in contrast, the largest n-fold clusters are isolated and much 

smaller. We also observed a higher fraction of particles in the six-fold clusters compared to the 

four-fold clusters as the local RB order formed in the square-rich region also contributes to the six-

fold symmetry (see Sec.VI Fig.S9 in SI). The fractal nature of the six-fold and four-fold clusters 

is consistent with a continuous phase transition. Figure 8 shows the relative orientational angle 



19 
 

between the largest six-fold and the largest four-fold clusters in selected states of the I phase, M 

and (hexatic-tetratic) two-phase regions (see Sec. IV in SI). As the system follows the sequence I 

→ M → (hexatic-tetratic) two-phase regions, the orientational correlation between the neighboring 

six-fold and four-fold ordered clusters increases (|6-4| → 0), consistent with the growing 

correlation length of bond-ordering in the whole system and indicative of the preferential 

alignment of the particles between the square-rich and disk-rich domains.  

 

 

Fig. 7 (color online). Growth of the four-fold and six-fold ordered domains for the equimolar 

disks+squares mixture with  = 1.1 and N= 10000 for I phase (at P*=13.7) and the M region (at 

P*=14.9). Distribution function of the fraction of particles belonging to the largest four-fold (a) 

and six-fold (b) clusters. Representative snapshots for the I and M configurations are labelled as 

I-4 and M-4 for four-fold clusters and I-6 and M-6 for six-fold clusters. The particles belonging to 

the first, second, third, and fourth largest clusters are colored in yellow, green, magenta and blue, 

respectively. 
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Fig. 8 Relative orientational angle between the largest six-fold and the largest four-fold clusters 

for representative I (blue), M (orange), and two-phase (green) states. I = isotropic phase, M = 

mosaic region.   

 

Unlike most other near-critical point phenomena described in the literature, particle energetics play 

no role in the underlying phase transition and it is hence instructive to discuss entropy effects. The 

overall mixing entropy in the M region, while lower than that in the I phase (where nearly ideal 

mixing occurs), must be significant. Indeed, while limited mixing happens at the length scale of 

individual particles inside clusters (as in the solid solutions) and at the grain boundaries, ‘random’ 

mixing also occurs at the length scale of the six-fold and four-fold ordered clusters due to the local 

compositional fluctuations near the critical point that scale in proportion to the correlation length 

of the ordered clusters. The result is a system with transient but well-defined micro-phase 

segregated regions which is quite distinct to the macro-phase segregated state observed above the 

critical pressure.  

In our athermal system, pressure and the associated pressurevolume (PV) “enthalpic” 

contribution to the free energy, act as the knob that controls the strength of the packing entropy 

that optimizes local particle arrangements and its interplay with mixing entropy. At low pressure, 

the local compositions are uncorrelated and the interparticle coupling is weak, with a neighboring 

site to a square or disk being indistinctly occupied by another square or disk (quasi random 

distribution). At higher pressure, compositional correlations and coupling is strong due to the loss 

in mixing entropy, favoring the formation of denser, orientationally aligned six-fold (disk-rich) 
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and four-fold (square-rich) clusters that minimize the free energy by enhancing PV < 0 effects. 

Note that a more efficient packing is typically associated with a gain in vibrational motion (and 

associated entropy) of individual particles. The M region observed in this work thus engenders 

when there is a close balance between the packing entropy favoring optimal packing of the 

particles and the mixing entropy favoring contact between unlike particles. 

We posit then that the domain clustering of M configurations engenders when, at a suitable range 

of compositions and densities, the two competing entropic forces, namely, entropic bonding 

favoring like-particle contacts and mixing entropy favoring random contacts, are in such a close 

balance that are able to coexist by attaining a “compromise” state exhibiting both segregated like-

particle domains and random mixing of those domains. As the M region is compressed to a higher 

density, the entropic cost of unlike contacts overpowers any gain in mixing entropy, leading (upon 

crossing a critical point) to the phase separation of the components into disk-rich and square-rich 

ordered phases. Conceptually, the  I → M → two-solid-phase progression with pressure for an 

equimolar mixture could be seen as the coarsening in the correlation length of the ordered domains, 

which goes from being very short ranged (I phase), to mesoscopic (M region) to macroscopic (two-

phase state). 

To underscore the significance of the optimal component size ratio, ξ, we also simulated phase 

diagrams for other ξ values for the disk+square mixture. We varied the ξ values by ± 27% from 

the representative optimal value of 1.1 so that the associated ∆Fx values are significantly higher 

than those in the relatively flat region for 1.04 < ξ < 1.2 (see Fig. 1). Specifically, Fig. 9 shows 

results for ξ = 0.8 and 1.4 for which, unlike the ξ = 1.1 case in Fig. 2, no M region was detected. 

In both cases, the stability region of the hexatic phase is much narrower compared to the ξ = 1.1 

case. Furthermore, while for the ξ = 1.1 case both the disk-rich and square-rich phases and solid 

solution regions are large and comparable in size (giving the phase diagram a symmetric look), 

those regions become very asymmetric for the other ξ  values; i.e., the hexatic and 1∆ regions are 

small, especially for the ξ = 0.8 case. These results clearly show that a system with a (near) optimal 

choice of ξ promotes the stability of ordered phases with substitutional disorder over wider ranges 

of composition and pressure and, by construction of  ∆Fx [see Eq. (1)], it does so in a way that 

both pure-component ordered phases are similarly represented (see Sec. VII). Arguably, the 

microscopic substitutional symmetry favored by a minimal ∆Fx gets translated into a macroscopic 
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symmetry in the substitutionally disordered solids and partially ordered phases in the phase 

diagram.  

 

Fig. 9 (color online). Area fraction-composition phase diagrams for disks (diameter σ) and squares 

(side edge a) with different size ratios, ξ = σ/a. Top: ξ = 0.8, bottom: ξ = 1.4. The tie lines in the 

two-phase regions are shown as dashed lines. 1∆ = triangular solid, 1□ = square solid, and I = 

isotropic phase.  

 

IV. Final Remarks and Outlook 

In summary, for the crystal-symmetry incompatible mixture of disk+squares with optimized size 

ratio  ( = 1.1), we mapped the pressure-composition phase diagram which revealed broad ranges 

of compositions and pressures where the hexagonal solid and hexatic phase (favored by disks) and 

square solid and tetratic phase (favored by squares) form. Moreover, we identified a distinctive M 
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region that resides near the critical point for the hexatic-tetratic phase coexistence and is 

characterized by randomly distributed, persistent micro-domains corresponding to four-fold and 

six-fold regions. In contrast, for the crystal-symmetry compatible mixture of disks and hexagons 

with optimized size ratio ( = 1.82), the corresponding phase diagram shows that a 1∆ solid 

solution and the hexatic phase form over the entire range of compositions. 

While the competition between 1∆/hexatic and 1□/tetratic ordering is not uncommon in 2D or 

quasi-2D systems, structures resembling those in the M region have only been seen under very 

restrictive conditions. For example, cuboctahedral nanoparticles pinned at 2D fluid-fluid interfaces 

have been observed to transition from a hexagonal to a square lattice only as transient, non-

equilibrium states (e.g., as surface ligands are removed and particles bond through their <100> 

facets) [61]. 2D simulations of hard rounded squares [62] of a particular degree of roundedness 

have predicted the formation of a “polycrystalline” phase with a patchy-domain structure loosely 

reminiscent of configurations of the M region. Through the rounding of square-corners, such a 

system provides a physical interpolation (in a single-component system) between disks and 

squares to reach a state where the entropic tendencies towards the formation of hexagonal and 

square lattices are in close balance, like that achieved in the M region by our disks+squares binary 

mixture.  

Structures from the M region found in the disks+squares mixture could display interesting optical 

phenomenon such as critical opalescence since the near-critical point fluctuations of the local 

composition cause the sizes of both four-fold and six-fold symmetry domains to fluctuate over 

large length scales. Alternatively, the dual structural symmetry observed in the M region could be 

leveraged for specialty applications, e.g., to fabricate a synthetic Chameleon skin [63], optical 

switches [64], or optical biosensors [65]. Indeed, M configurations consist of pervading seeds of 

both hexatic and tetratic phases, whose global order could then be readily biased (through a suitable 

external field) to switch between one phase and the other. The methods used and principles 

unveiled in this work should be general and applicable to many other athermal mixtures.    
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